16 Tentukan himpunan penyelesaian dari pertidaksamaan nilai mutlak | x + 3 | β€ | 2x - 3 | adalahJawaban : Kalau dalam bentuk soal ini, langkah menyelesaikan pertidaksamaannya dengan mengkuadratkan kedua ruas. Perhatikan proses berikut ini : (x + 3) 2 β€ (2x - 3) 2 (x + 3) 2 - (2x - 3) 2 β€ 0
PertidaksamaanLinear 3 Variabel . Contoh 2 tentukan daerah penyelesaian dari sistem pertidaksamaan dua variabel berikut! Ya caranya hampi sama kayak ngitung persamaan linier 3 variabel. Pertidaksamaan Linear Pengertian Sistem Soal from bantuannya untuk di kerjakan, soalnya belum paham materi.
Tentukanhimpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. Pembahasan: Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut. Pada prinsipnya, langkah langkah penyelesaian nilai mutlak diusahakan bentuk mutlak berada di ruas kiri. Cara menyelesaikan pertidaksamaan mutlak ini sebagai berikut.-9 < x+7
ContohTentukan himpunan penyelesaian dari Pertidaksamaan nilai mutlak berikut ini. Jawaban 1.Cara menyelesaikan pertidaksamaan mutlak ini sebagai berikut. -9 < x+7 < 9 -9 - 7 < x < 9 - 7 -16 < x < 2 Jadi, himpunan penyelesaiannya adalah { x/ -16 < x < 2} 2.
Tentukanhimpunan penyelesaian pertidaksamaan pecahan berikut! a. x - 2 / x - 7 > 0 b. x + 3 / 3x - 2 β€ 0 Pembahasan: Soal di atas bisa kita selesaikan dengan melakukan perhitungan seperti berikut: nanangnurulhidayat@gmail.com. Share : Post a Comment for "Tentukan himpunan penyelesaian pertidaksamaan pecahan berikut! a. x - 2 / x
PenilaianHarian Kerjakan soal-soal di bawah ini dengan benar! 1. 2. 3. Tentukan himpunan penyelesaian dari pertidaksamaan berikut! a. 12-3xl
Pertidaksamaankedua: Pembuat nol: . Kemudian, kita buat garis bilangan dan kita tentukan tanda dari setiap daerah pada garis bilangan dengan cara kita uji titik. karena tanda pertidaksamaan kita adalah , maka pada garis bilangan kita ambil daerah yang bernilai negatif, yaitu . Oleh karena itu, irisan dari penyelesaian pertama dan kedua adalah
Supayakalian lebih mudah untuk memahami daerah penyelesaian dari sistem pertidaksamaan linear dua peubah, perhatikan beberapa contoh yang akan kami sajikan di bawah ini. Contoh: Tentukan daerah himpunan penyelesaian dari sistem pertidaksamaan di bawah ini: a. 3x + 5y β€ 15 b. x + y β€ 6 x β₯ 0 2x + 3y β€ 12 y β₯ 0 x β₯ 1 y β₯ 2. Jawab: a.
Tentukanhimpunan penyelesaian dari pertidaksamaan linier dua variabel di bawah ini! Penyelesaian: Langkah 1: menentukan titik potong pada sumbu x, berarti y = 0. x - 2y = -2. x - 2.0 = -2. x = -2. Titik sumbu x adalah (-2, 0) Berikut adalah contoh soal pertidaksamaan kuadrat dua variabel agar kamu semakin paham materi tersebut. Contoh soal 2.
Tentukandaerah penyelesaian dari sistem pertidaksamaan berikut. 2. Tentuka sisteam pertidaksamaan dari . tugas . Latihan soaL . 10 . Program Linear | KeLas Xi semester 1. C. Program Linear . Masalah tersebut dapat diselesaikan dengan program linear dengan terlenih dahulu membuat model matematikanya.
qMwH. PembahasanBeberapa sifat yang perlu diperhatikan dalam menyelesaikan pertidaksamaan adalah sebagai berikut. Tanda pertidaksamaan tidak berubah jika pada ruas kiri dan kanan ditambah atau dikurang dengan bilangan negatif atau bilangan positif. Tanda pertidaksamaan tidak berubah jika pada ruas kiri dan kanan dikali atau dibagi dengan bilangan positif. Tanda pertidaksamaan berubah atau dibalik jika pada ruas kiri dan kanan dikali atau dibagi dengan bilangan negatif. Dari aturan di atas, diperoleh perhitungan sebagai berikut. Dengan demikian himpunan penyelesaiannya adalah Jadi, himpunan penyelesaian dari pertidaksamaan adalah .Beberapa sifat yang perlu diperhatikan dalam menyelesaikan pertidaksamaan adalah sebagai berikut. Dari aturan di atas, diperoleh perhitungan sebagai berikut. Dengan demikian himpunan penyelesaiannya adalah Jadi, himpunan penyelesaian dari pertidaksamaan adalah .
Tentukan himpunan penyelesaian dari pertidaksamaan berikut! 2x β 5 > 3 Jawab 2x β 5 > 3 Jadi himpunan penyelesaiannya adalah {x x 4}. - Jangan lupa komentar & sarannya Email nanangnurulhidayat
Postingan ini membahas contoh soal pertidaksamaan linear satu variabel dan dua varibel yang disertai pembahasannya atau penyelesaiannya. Sistem pertidaksamaan linear satu variabel adalah suatu sistem pertidaksamaan linear yang memuat satu variabel saja sedangkan sistem pertidaksamaan linear dua variabel adalah suatu sistem pertidaksamaan linear yang memuat dua penyelesaiannya dari sistem pertidaksamaan linear dua variabel merupakan irisan atau interaksi dari himpunan penyelesaian pertidaksamaan linear yang terdapat pada sistem pertidaksamaan itu. Dalam bentuk grafik pada bidang koordinat, himpunan penyelesaiannya itu berupa daerah yang dibatasi oleh garis-garis dari sistem persamaan linearnya. Untuk lebih jelasnya, dibawah ini diberikan beberapa contoh soal pertidaksamaan linear dan soal pertidaksamaan linear satu variabelContoh soal 1Tentukanlah nilai x dari pertidaksamaan linear berikut untuk x bilangan + 2 > 4x β 2 4 β 2 atau x > 2. Jadi himpunan penyelesaian = {3, 4, 5, 6, 7, β¦}.x 410 β a 42a > 4 + 82a > 12a > 6HP = {7, 8, 9, 10Jawaban soal 210 β a β 2HP = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}Contoh soal 3Tentukan himpunan penyelesaian dari a, dengan a bilangan asli kurang dari 11 pada pertidaksamaan berikut + 3 5Pembahasan / penyelesaian soalJawaban soal 16a + 3 54a > 5 β 74a > -2a > -2/4a > -1/2HP = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}Contoh soal 4 UN 2015Himpunan penyelesaian dari 2x β 3 β€ 21 + 4x dengan x bilangan bulat adalahβ¦A. {-12, -11, -10, -9, β¦}B. {-9, -8, -7, -6, β¦}C. {β¦, -15, -14, -13, -12D. {β¦, -12, -11, -10, -9}Pembahasan / penyelesaian soal2x β 3 β€ 21 + 4x2x β 4x β€ 21 + 3-2x β€ 24-x β€ 24/2x β₯ β 12HP {-12, -11, -10, -9, β¦}Jadi soal ini jawabannya soal 5 UN 2013Himpunan penyelesaian dari pertidaksamaan 6x β 8 2, x bilangan real }B. {x x > -2, x bilangan real }C. {x x x + 17 dalam bentuk grafik bilangan x β bilangan rasional adalahβ¦Soal pertidaksamaan linear satu variabelPembahasan / penyelesaian soal2x + 1 > x + 172x β x > 17 β 1x > 16Garis bilangan yang menunjukkan x > 16 adalah yang D. Jadi soal ini jawabannya soal 7Himpunan penyelesaian dari 2 x β 3 -5}C. {x x 5}Pembahasan / penyelesaian soal2 x β 3 β 30/6x > -5Soal ini jawabannya soal 8Himpunan penyelesaian dari 2 β 3 x β 1 -3}C. {x x 5}Pembahasan / penyelesaian soal2 β 3 x β 1 < 2 β 6 x + 12 β 3x + 3 < 2 β 6x β 6-3x + 5 < -6x β 4-3x + 6x < -4 β 53x < β 9x < -9/3x < -3Soal ini jawabannya soal 9Himpunan penyelesaian dari β 2 < 3 x β 1 < 2 adalah β¦A. {x β 2/3 < x < 5/3}B. {x 2/3 < x < 5}C. {x β 2/3 < x < 1}D. {x 1 < x < 5}E. {x 1/3 < x < 5/3}Pembahasan / penyelesaian soal-2 < 3 x β 1 < 2-2/3 < x β 1 < 2/3-2/3 + 1 < x < 2/3 + 11/3 < x < 5/3Soal ini jawabannya soal 10Penyelesaian dari pertidaksamaan -2 < 3x + 1 < 7 adalah β¦A. -3 < x < 7B. -1 < x < 2C. -2 < x < -1D. 1 < x < 2E. -1 < x < 1Pembahasan / penyelesaian soal-2 < 3x + 1 < 7-2 β 1 < 3x < 7 β 1-3 < 3x < 6-3/3 < x < 6/3-1 < x < 2Soal ini jawabannya soal pertidaksamaan linear dua variabelContoh soal 1Perhatikan gambar dibawah soal pertidaksamaan linear dua variabel nomor 1Daerah yang diarsir adalah himpunan penyelesaian dari pertidaksamaan linear β¦.A. x + 2y β€ 8 ; 2x + 3y β€ 12 ; x β₯ 0 ; y β₯ 0 B. 2x + y β€ 8 ; 3x + 2y β€ 12 ; x β₯ 0 ; y β₯ 0 C. 2x + y β€ 8 ; 2x + 3y β€ 12 ; x β₯ 0 ; y β₯ 0 D. 2x + y β₯ 8 ; 3x + 2y β₯ 12 ; x β₯ 0 ; y β₯ 0 E. x + 2y β₯ 8 ; 2x + 3y β₯ 12 ; x β₯ 0 ; y β₯ 0Pembahasan / penyelesaian soalDaerah yang diarsir pada gambar diatas berada dibawah garis 1 dan 2 sehingga sudah bisa dipastikan kedua pertidaksamaan yang dihasilkan mempunyai notasi kurang dari sama dengan β€. Garis 1 dan garis 2 berada di x dan y positif sehingga pertidaksamaan yang berlaku adalah x β₯ 0 dan y β₯ 0 . Selanjutnya tentukan persamaan garis 1 dan garis 2 dengan cara dibawah potong garis 1 adalah 0 ; 4 dan 6 ; 0 maka persamaan garisnya β y β y1y2 β y1 = x β x1x2 β x1 β y β 40 β 4 = x β 06 β 0 β 6 y β 4 = -4 x β 0 atau 6y β 24 = -4x β 4x + 6y = 24 atau 2x + 3y = 12. Pertidaksamaan untuk garis pertama adalah 2x + 3y β€ 12 Titik potong garis 2 adalah 0 ; 8 dan 4 ; 0 maka persamaan garis β y β 80 β 8 = x β 04 β 0 β 4 y β 8 = -8x atau 4y β 32 = -8x β 8x + 4y = 32 atau 2x + y = 8 Pertidaksamaan garis kedua adalah 2x + y β€ 8 Jadi pertidaksamaan untuk gambar diatas adalah 2x + y β€ 8 ; 2x + 3y β€ 12 ; x β₯ 0 ; y β₯ ini jawabannya soal 2Perhatikan gambar dibawah soal pertidaksamaan linear dua variabel nomor 2Sistem pertidaksamaan yang sesuai untuk daerah yang diarsir adalahβ¦A. x + 6y β€ 12 ; 5x + 4y β₯ 20 ; x β₯ 0 ; y β₯ 0 B. x + 6y β€ 12 ; 4x + 5y β₯ 20 ; x β₯ 0 ; y β₯ 0 C. 6x + y β€ 12 ; 4x + 5y β₯ 20 ; x β₯ 0 ; y β₯ 0 D. 6x + y β₯ 12 ; 5x + 4y β€ 20 ; x β₯ 0 ; y β₯ 0 E. 6x + y β€ 12 ; 5x + 4y β₯ 20 ; x β₯ 0 ; y β₯ 0Pembahasan / penyelesaian soalDaerah yang diarsir gambar nomor 5 berada diatas garis 1 dan dibawah garis 2 sehingga pertidaksamaan garis 1 tandanya lebih dari sama dengan β₯ dan pertidaksamaan garis 2 tandanya kurang dari sama dengan β€. Selanjutnya kita menentukan persamaan garis 1 dan garis potong garis 1 adalah 0 ; 4 dan 5 ; 0 maka persamaan garisnya β y β 40 β 4 = x β 05 β 0 β 5 y β 4 = -4x atau 4x + 5y = 20. Pertidaksamaan garis 1 adalah 4x + 5y β₯ 20 Titik potong garis 2 adalah 0 ; 2 dan 12 ; 0 maka persamaan garis β y β 20 β 2 = x β 012 β 0 β 12 y β 2 = -2x atau 12y β 24 = -2x 2x + 12y = 24 atau x + 6y = 12 Pertidaksamaan garis 2 adalah x + 6y β€ 12 Jadi sistem pertidaksamaan untuk nomor 5 adalah x + 6y β€ 12 ; 4x + 5y β₯ 20 ; x β₯ 0 ; y β₯ 0Soal ini jawabannya soal 3Perhatikan gambar dibawah soal pertidaksamaan linear nomor 3Sistem pertidaksamaan yang memenuhi daerah yang diarsir pada gambar diatas adalahβ¦A. x + 2y β₯ 8 ; 2x + 3y β€ 12 ; x β₯ 0 ; y β₯ 0 B. x + 2y β€ 8 ; 2x + 3y β€ 12 ; x β₯ 0 ; y β₯ 0 C. 2x + y β₯ 8 ; 2x + 3y β€ 12 ; x β₯ 0 ; y β₯ 0 D. 2x + y β€ 8 ; 2x + 3y β₯ 12 ; x β₯ 0 ; y β₯ 0 E. 2x + y β€ 8 ; 2x + 3y β€ 12 ; x β₯ 0 ; y β₯ 0Pembahasan / penyelesaian soalDaerah yang diarsir pada gambar nomor 6 berada diatas garis 1 dan dibawah garis 2. Jadi pertidaksamaan garis 1 tandanya β₯ dan pertidaksamaan garis 2 tandanya β€. Selanjutnya kita menentukan persamaan kedua potong garis 1 adalah 0 ; 4 dan 6 ; 0 maka persamaan garisnya β y β 40 β 4 = x β 06 β 0 β 6 y β 4 = -4 x β 0 atau 6y β 24 = -4x β 4x + 6y = 24 atau 2x + 3y = 12. Pertidaksamaan untuk garis pertama adalah 2x + 3y β₯ 12 Titik potong garis 2 adalah 0 ; 8 dan 4 ; 0 maka persamaan garis β y β 80 β 8 = x β 04 β 0 β 4 y β 8 = -8x atau 4y β 32 = -8x β 8x + 4y = 32 atau 2x + y = 8 Pertidaksamaan garis kedua adalah 2x + y β€ 8 Jadi pertidaksamaan untuk gambar diatas adalah 2x + y β€ 8 ; 2x + 3y β₯ 12 ; x β₯ 0 ; y β₯ soal ini jawabannya D.